Analysis of Brushless direct current Generator

نویسنده

  • N. Venkateswaran
چکیده

In this work, optimisation of a brushless direct current (BLDC) generator design was undertaken by carrying out an electromagnetic and computational fluid dynamic study. The studies were carried out for different loadingoverloading conditions and angular speeds, keeping in consideration the required electrical and thermal parameters, firstly for the initial design and then for optimised designs. In the initial phase, transient electromagnetic simulations were done using Ansys Maxwell to estimate power output, flux densities, heat losses et al. In the next phase, steady state conjugate heat transfer simulations using frozen rotor method for rotating domains were carried out in Ansys CFX using the heat loss values obtained from electromagnetic study in the first phase. The results from conjugate heat transfer were obtained in the form of temperature and flow parameters. After a thorough study and comparison of the results for different designs, obtained in the two phases, it was seen one of the optimised designs showed better electromagnetic, thermal and flow parameters as compared to the initial design and satisfied all the optimum electrical and thermal parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Brushless DC Motor/Generator without Permanent Magnet

The Brushless DC (BLDC) motor is a simple robust machine which has found application over a wide power and speed of ranges in different shapes and geometry. This paper briefly reviews the fundamentals behind the motor and also the different types of BLDC motors with different geometries and then presents a new configuration for BLDC motor/generator, which does not use a permanent magnet in the ...

متن کامل

A Review of the Control Techniques for Brushless Direct Current Motors (REVIEW PAPER)

This paper surveys the literature of the brushless DC motor speed control techniques. The paper should prove useful to both researchers as well as practising engineers as a signpost to the current state of the art. Based on the review some further studies are suggested.

متن کامل

Torque Control of Brushless Direct Current Motor Drives Using Single Current Sensor with High Reliability

Due to the simple structure, high torque density, low maintenance, and high efficiency, brushless direct current (BLDC) motors are widely used in automation and industrial applications. A control strategy based on single current sensor is proposed for a four-switch three-phase BLDC motor system to lower cost and improve reliability. The whole working process of the BLDC motor is divided into si...

متن کامل

A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy

Brushless doubly fed reluctance generator (BDFRG) has been recently suggested as a wind generator. Different control methods are presented in literature for the BDFRG, but there is a gap on control under unbalanced grid voltage condition (UGVC). This paper presents a predictive direct power control (PDPC) method for the BDFRG under UGVC. The proposed PDPC method is based on power compensation s...

متن کامل

Neuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator

The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017